Course Content
Properties of Matter
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Explain the three states of matter. 2.Explain phenomenon of surface tension. 3.Explain gas laws.
0/3
Measurement
OBJECTIVES By the end of this topic , the trainee should be able to: 1.State the basic and derived quantities of measurements 2.Describe quantities of measurements 3.State the SI units of quantities of measurements and their sub-multipliers 4.Convert units from one to another
0/4
Pressure
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define pressure 2.Determine pressure in solids and fluids 3.Explain the type of instruments used in measurement of pressure of gases 4.Explain transmission of presure in liquids
0/2
Force
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define force and its SI units 2.Explain types of force 3.Measure force 4.Work out calculations involving force 5.Explain Hooke’s law
0/3
Hooke’s Law
Hooke's Law  is a law named after 17th century British physicist Robert Hooke, who sought to demonstrate the relationship between the forces applied to a spring and its elasticity.
0/1
Moments
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define moments of a force 2.Explain principles of moments 3.Explain statics , dynamics and kinematics
0/1
Velocity and Speed
OBJECTIVES By the end of this topic , the trainee should be able to : 1.Define speed and velocity 2.Explain types of motion 3.Determine Linear Determine Circular Motion
0/1
Work and Power
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define work and power 2.Work out calculations involving work and power
0/1
Energy
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define energy 2.Explain forms of energy 3.Explain law of conservation of energy
0/1
Motion
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define motion 2.Explain causes of motion 3.Explain types of motion 4.Describe linear and circular motion
0/3
Newton’s Laws of Motion
OBJECTIVES By the end of this topic, the trainee should be able to: 1.State Newton’s laws of motion 2.Explain relationships between mass and inertia 3.Explain significance of Newton’s laws of motion
0/1
Heat and Heat Transfer
OBJECTIVES By the end of this topic, the trainee should be able to 1.Define temperature and heat 2.Describe instruments used to measure temperature 3.Explain modes of heat transfer 4.Explain factors that influence heat transfer 5.Explain heat capacity, specific heat capacity and specific latent heat of substances 6. Work out calorimetric calculations
0/5
Light
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define light and its properties 2.Explain types of mirrors and lenses 3.Explain reflection and refraction of light 4. Explain the lens formulae
0/10
WAVES
OBJECTIVES By the end of this topic , the trainee should be able to : 1. Define waves 2.Explain types of waves 3.Explain characteristics and properties of waves 4.Explain rectilinear propagation of waves 5.Describe refraction of waves 6.Describe sound and sound waves
0/6
Electrostatics
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define electrostatics 2. Describe the working of electroscopes 3.Describe different methods of charging a body 4.Explain electric fields 5.Describe charge distribution on conductors’ surface 6. Describe capacitors and capacitance
0/5
Magnetism and Electromagnetism
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define magnetism 2.Identify magnetic and non- magnetic materials 3.Explain properties of magnets 4.Describe magnetic field patterns 5.Describe making magnets 6.Explain domain theory of magnets 7.Describe magnetic effect of an electric current. 8. Describe electromagnets and electromagnetism 9.Describe electromagnetic induction
0/6
Current Electricity
CURRENT ELECTRICITY OBJECTIVES By the end of this topic, the trainer should be able to: 1. Define current and electricity 2.Electric potential difference 3.Explain use of a meters, voltmeters and resistors 4.Explain ohm’s law 5. Explain Electromotive force and internal resistance 6.Describe production of electric current 7.Describe simple cells, Leclanche’ cell, dry cells and lea-acid accumulators 8.Describe mains electricity 9.Describe domestic wiring
0/6
Electromagnetic Spectrum
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define magnetic spectrum 2. Explain properties of electromagnetic waves 3. Describe applications of electromagnetic radiation
0/2
Radioactivity
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define radioactivity 2.Classify radiations 3.Explain the properties of radiation materials 4.Describe nuclear fission and nuclear fusion 5.Describe methods for detecting nuclear radiation 6.Describe activity and half-life of elements 7. Discuss hazards of radioactivity and their precautions 8. Outline the applications of radioactivity
0/4
Cathode and X-Rays
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define cathode and X- rays 2.Explain production of cathode and X- ray 3.Explain properties of cathode and X- ray 4.Describe cathode ray oscilloscope (CRO) 5. Describe the applications of Cathode and X-rays
0/2
Physics Techniques For Science Laboratory Technicians
About Lesson

Views: 27

Applications Of Radioactivity

1. Smoke Detectors

  • Alpha particles are used in smoke detectors
  • The alpha radiation will normally ionise the air within the detector, creating a current
  • The alpha emitter is blocked when smoke enters the detector
  • The alarm is triggered by a microchip when the sensor no longer detects alpha

2.Measuring the Thickness of Materials

  • As a material moves above a beta source, the particles that are able to penetrate it can be monitored using a detector
  • If the material gets thicker more particles will be absorbed, meaning that less will get through
  • If the material gets thinner the opposite happens
  • This allows the machine to make adjustments to keep the thickness of the material constant

Beta particles can be used to measure the thickness of thin materials such as paper, cardboard or aluminium foil

  • Beta radiation is used because it will be partially absorbedby the material
  • If alphaparticles were used all of them would be absorbed and none would get through
  • If gammawere used almost all of it would get through and the detector would not be able to sense any difference if the thickness were to change

3.Diagnosis and Treatment of Cancer

  • Radiotherapyis the name given to the treatment of cancer using radiation
  • (Chemotherapy is treatment using chemicals)
  • Although radiation can cause cancer, it is also highly effective at treating it
  • Radiation can kill living cells. Some cells, such as bacteria and cancer cells, are more susceptible to radiation than others
  • Beams of gamma rays are directed at the cancerous tumour
  • Gamma rays are used because they are able to penetrate the body, reaching the tumour
  • The beams are moved around to minimise harm to healthy tissue whilst still being aimed at the tumour
  • A traceris a radioactive isotope that can be used to track the movement of substances, like blood, around the body
  • A PET scan can detect the emissions from a tracer to diagnose cancer and determine the location of a tumour
  • Radiation therapy to remove a tumour

ü 4.Sterilising Food and Medical Equipment

  • Gamma radiation is widely used to sterilisemedical equipment
  • Gamma is most suited to this because:
  • It is the most penetratingout of all the types of radiation
  • It is penetrating enough to irradiate all sidesof the instruments
  • Instruments can be sterilised without removing the packaging
  • Food can be irradiated in order tokill any microorganisms that are present on it
  • This makes the food last longer, and reduces the risk of food-borne infections

5.Energy source – in N. America, Europe and Russia nuclear reactors are used to generate electricity.

 The amount of fuel used is quite small hence an economical way of generating electricity energy as compared to H.E.P generation.

6.Carbon dating – Through the identification of carbon-14 and carbon-12 absorbed by dead plants and animals. Scientists can be able to estimate the age of a dead organism. Since carbon is a radioactive element with a half-life of 5,600 years archeologists can be able to estimate the ages of early life through carbon dating.

  1. Biology and agriculture- Radioactive sources are used to generate different species of plants with new characteristics that can withstand diseases and drought. Insects are sterilized through radiation to prevent the spread of pests and diseases. Potatoes exposed to radiation can be stored for a long time without perishing.
Join the conversation

You cannot copy content of this page