Course Content
Properties of Matter
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Explain the three states of matter. 2.Explain phenomenon of surface tension. 3.Explain gas laws.
0/3
Measurement
OBJECTIVES By the end of this topic , the trainee should be able to: 1.State the basic and derived quantities of measurements 2.Describe quantities of measurements 3.State the SI units of quantities of measurements and their sub-multipliers 4.Convert units from one to another
0/4
Pressure
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define pressure 2.Determine pressure in solids and fluids 3.Explain the type of instruments used in measurement of pressure of gases 4.Explain transmission of presure in liquids
0/2
Force
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define force and its SI units 2.Explain types of force 3.Measure force 4.Work out calculations involving force 5.Explain Hooke’s law
0/3
Hooke’s Law
Hooke's Law  is a law named after 17th century British physicist Robert Hooke, who sought to demonstrate the relationship between the forces applied to a spring and its elasticity.
0/1
Moments
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define moments of a force 2.Explain principles of moments 3.Explain statics , dynamics and kinematics
0/1
Velocity and Speed
OBJECTIVES By the end of this topic , the trainee should be able to : 1.Define speed and velocity 2.Explain types of motion 3.Determine Linear Determine Circular Motion
0/1
Work and Power
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define work and power 2.Work out calculations involving work and power
0/1
Energy
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define energy 2.Explain forms of energy 3.Explain law of conservation of energy
0/1
Motion
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define motion 2.Explain causes of motion 3.Explain types of motion 4.Describe linear and circular motion
0/3
Newton’s Laws of Motion
OBJECTIVES By the end of this topic, the trainee should be able to: 1.State Newton’s laws of motion 2.Explain relationships between mass and inertia 3.Explain significance of Newton’s laws of motion
0/1
Heat and Heat Transfer
OBJECTIVES By the end of this topic, the trainee should be able to 1.Define temperature and heat 2.Describe instruments used to measure temperature 3.Explain modes of heat transfer 4.Explain factors that influence heat transfer 5.Explain heat capacity, specific heat capacity and specific latent heat of substances 6. Work out calorimetric calculations
0/5
Light
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define light and its properties 2.Explain types of mirrors and lenses 3.Explain reflection and refraction of light 4. Explain the lens formulae
0/10
WAVES
OBJECTIVES By the end of this topic , the trainee should be able to : 1. Define waves 2.Explain types of waves 3.Explain characteristics and properties of waves 4.Explain rectilinear propagation of waves 5.Describe refraction of waves 6.Describe sound and sound waves
0/6
Electrostatics
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define electrostatics 2. Describe the working of electroscopes 3.Describe different methods of charging a body 4.Explain electric fields 5.Describe charge distribution on conductors’ surface 6. Describe capacitors and capacitance
0/5
Magnetism and Electromagnetism
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define magnetism 2.Identify magnetic and non- magnetic materials 3.Explain properties of magnets 4.Describe magnetic field patterns 5.Describe making magnets 6.Explain domain theory of magnets 7.Describe magnetic effect of an electric current. 8. Describe electromagnets and electromagnetism 9.Describe electromagnetic induction
0/6
Current Electricity
CURRENT ELECTRICITY OBJECTIVES By the end of this topic, the trainer should be able to: 1. Define current and electricity 2.Electric potential difference 3.Explain use of a meters, voltmeters and resistors 4.Explain ohm’s law 5. Explain Electromotive force and internal resistance 6.Describe production of electric current 7.Describe simple cells, Leclanche’ cell, dry cells and lea-acid accumulators 8.Describe mains electricity 9.Describe domestic wiring
0/6
Electromagnetic Spectrum
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define magnetic spectrum 2. Explain properties of electromagnetic waves 3. Describe applications of electromagnetic radiation
0/2
Radioactivity
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define radioactivity 2.Classify radiations 3.Explain the properties of radiation materials 4.Describe nuclear fission and nuclear fusion 5.Describe methods for detecting nuclear radiation 6.Describe activity and half-life of elements 7. Discuss hazards of radioactivity and their precautions 8. Outline the applications of radioactivity
0/4
Cathode and X-Rays
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define cathode and X- rays 2.Explain production of cathode and X- ray 3.Explain properties of cathode and X- ray 4.Describe cathode ray oscilloscope (CRO) 5. Describe the applications of Cathode and X-rays
0/2
Physics Techniques For Science Laboratory Technicians
About Lesson

Views: 39

The lens formula

Let the object distance be represented by ‘u’, the image distance by ‘v’ and the focal length by ‘f’, then the general formula relating the three quantities is given by;

 1 / f = 1 / u + 1 / v – this is the lens formula.

Examples

  1. An object is placed 12 cm from a converging lens of focal length 18 cm. Find the position of the image.

 Solution

  Since it is a converging lens f = +18 cm (real-is-positive and virtual-is-negative rule)

  The object is real therefore u = +12 cm, substituting in the lens formula, then

  •   1 / f = 1 / u + 1 / v
  •  or
  •         1 / v = 1 / f – 1 / u
  •         = 1 / 18 – 1 / 12
  •          = – 1 / 36

 Hence v = – 36 then the image is virtual, erect and same size as the object.

  1. The focal length of a converging lens is found to be 10 cm. How far should the lens be placed from an illuminated object to obtain an image which is magnified five times on the screen?

  Solution

  f = + 10 cm m = v / u = 5 hence v = 5 u

Using the lens formula 1 / f = 1 / u + 1 / v => 1 /10 = 1 / u + 1 / 5 u (replacing v with 5 u)

 1 / 10 = 6 / 5 u, hence 5 u = 60 giving u = 12 cm (the lens should be placed 12 cm from the illuminated object)

  1. The lens of a slide projector focuses on an image of height 1.5m on a screen placed 9.0 m from the projector.

  If the height of the picture on the slide was 6.5 cm, determine,

  1. a) Distance from the slide (picture) to the lens
  2. b) Focal length of the lens

 Solution

  • Magnification = height of the image / height of the object = v / u = 150 / 6.5 = 900 / u
  • u = 39 cm (distance from slide to the lens). m = 23.09
  • 1 / f = 1 / u + 1 / v = 1 /39 + 1 / 90 = 0.02564 + 0.00111
  •  1 / f = 0.02675 (reciprocal tables)
  •  f = 37.4 cm.

  Determining focal lengths.

  1. Determining focal length of a converging lens

Experiment: To determine the focal length of a converging lens using the lens formula.

Procedure.

  1. Set up the apparatus as shown below

  1. Place the object at reasonable length from the screen until a real image is formed on the screen. Move the lens along the metre rule until a sharply focused image is obtained.
  2. By changing the position of the object obtain several pairs of value of u and v and record your results as shown.
  • ·

 Discussion

The value u v / u + v is the focal length of the lens and the different sets of values give the average value of ‘f’.

Alternatively the value ‘f’ may be obtained by plotting a graph of 1 / v against 1 / u. When plotted the following graph is obtained.

  • ·

  Since 1 / f = 1 / u + 1 / v, at the y-intercept 1 / u = 0, so that 1/ f = 1 / v or f = v. The focal length may therefore be obtained by reading off the y-intercept and finding the reciprocal.

Similarly at the x-intercept, 1 / v = 0, therefore 1 / f = 1 / u or f = u hence the focal length can also be obtained by reading off the x-intercept and finding the reciprocal.

Join the conversation

You cannot copy content of this page