Course Content
Properties of Matter
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Explain the three states of matter. 2.Explain phenomenon of surface tension. 3.Explain gas laws.
0/3
Measurement
OBJECTIVES By the end of this topic , the trainee should be able to: 1.State the basic and derived quantities of measurements 2.Describe quantities of measurements 3.State the SI units of quantities of measurements and their sub-multipliers 4.Convert units from one to another
0/4
Pressure
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define pressure 2.Determine pressure in solids and fluids 3.Explain the type of instruments used in measurement of pressure of gases 4.Explain transmission of presure in liquids
0/2
Force
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define force and its SI units 2.Explain types of force 3.Measure force 4.Work out calculations involving force 5.Explain Hooke’s law
0/3
Hooke’s Law
Hooke's Law  is a law named after 17th century British physicist Robert Hooke, who sought to demonstrate the relationship between the forces applied to a spring and its elasticity.
0/1
Moments
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define moments of a force 2.Explain principles of moments 3.Explain statics , dynamics and kinematics
0/1
Velocity and Speed
OBJECTIVES By the end of this topic , the trainee should be able to : 1.Define speed and velocity 2.Explain types of motion 3.Determine Linear Determine Circular Motion
0/1
Work and Power
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define work and power 2.Work out calculations involving work and power
0/1
Energy
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define energy 2.Explain forms of energy 3.Explain law of conservation of energy
0/1
Motion
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define motion 2.Explain causes of motion 3.Explain types of motion 4.Describe linear and circular motion
0/3
Newton’s Laws of Motion
OBJECTIVES By the end of this topic, the trainee should be able to: 1.State Newton’s laws of motion 2.Explain relationships between mass and inertia 3.Explain significance of Newton’s laws of motion
0/1
Heat and Heat Transfer
OBJECTIVES By the end of this topic, the trainee should be able to 1.Define temperature and heat 2.Describe instruments used to measure temperature 3.Explain modes of heat transfer 4.Explain factors that influence heat transfer 5.Explain heat capacity, specific heat capacity and specific latent heat of substances 6. Work out calorimetric calculations
0/5
Light
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define light and its properties 2.Explain types of mirrors and lenses 3.Explain reflection and refraction of light 4. Explain the lens formulae
0/10
WAVES
OBJECTIVES By the end of this topic , the trainee should be able to : 1. Define waves 2.Explain types of waves 3.Explain characteristics and properties of waves 4.Explain rectilinear propagation of waves 5.Describe refraction of waves 6.Describe sound and sound waves
0/6
Electrostatics
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define electrostatics 2. Describe the working of electroscopes 3.Describe different methods of charging a body 4.Explain electric fields 5.Describe charge distribution on conductors’ surface 6. Describe capacitors and capacitance
0/5
Magnetism and Electromagnetism
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define magnetism 2.Identify magnetic and non- magnetic materials 3.Explain properties of magnets 4.Describe magnetic field patterns 5.Describe making magnets 6.Explain domain theory of magnets 7.Describe magnetic effect of an electric current. 8. Describe electromagnets and electromagnetism 9.Describe electromagnetic induction
0/6
Current Electricity
CURRENT ELECTRICITY OBJECTIVES By the end of this topic, the trainer should be able to: 1. Define current and electricity 2.Electric potential difference 3.Explain use of a meters, voltmeters and resistors 4.Explain ohm’s law 5. Explain Electromotive force and internal resistance 6.Describe production of electric current 7.Describe simple cells, Leclanche’ cell, dry cells and lea-acid accumulators 8.Describe mains electricity 9.Describe domestic wiring
0/6
Electromagnetic Spectrum
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define magnetic spectrum 2. Explain properties of electromagnetic waves 3. Describe applications of electromagnetic radiation
0/2
Radioactivity
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define radioactivity 2.Classify radiations 3.Explain the properties of radiation materials 4.Describe nuclear fission and nuclear fusion 5.Describe methods for detecting nuclear radiation 6.Describe activity and half-life of elements 7. Discuss hazards of radioactivity and their precautions 8. Outline the applications of radioactivity
0/4
Cathode and X-Rays
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define cathode and X- rays 2.Explain production of cathode and X- ray 3.Explain properties of cathode and X- ray 4.Describe cathode ray oscilloscope (CRO) 5. Describe the applications of Cathode and X-rays
0/2
Physics Techniques For Science Laboratory Technicians
About Lesson

Views: 33

Activity and Half-Life Of Elements

  The activity of a sample of radioactive element is the rate at which its constituent nuclei decay or disintegrate.

  This is measured in disintegrations per second or Curie (Ci) units, where 1 Ci = 3.7 × 1010 disintegrations per second

  1 micro Curie (µ C) = 3.7 × 104 disintegrations per second.

 The law of radioactive decay states that “the activity of a sample is proportional to the number of undecayed nuclei present in the sample”.

 Each radioactive nuclide has a characteristic, constant half-life (t1/2).The half-life of a radioactive element is the time required for its one-half of the sample to decay.

An isotope’s half-life allows us to determine how long a sample of a useful isotope will be available, and how long a sample of an undesirable or dangerous isotope must be stored before it decays to a low-enough radiation level that is no longer a problem.

For example, cobalt-60, an isotope that emits gamma rays used to treat cancer, has a half-life of 5.27 years

Since every half-life for a radionuclide is the same length of time, we can use the following equation to calculate how much radioactive nuclide is remaining after the passage of any number (n) of half-lives:

Practice Problem:

Question: The half-life of Zn-71 is 2.4 minutes.  If one had 100.0 g at the beginning, how many grams would be left after 7.2 minutes has elapsed?

Solution:

Step 1. Determine the number of half-lives that have passed:    number of half-lives = time passed divided by the half-life (Be sure that the time units match!!)

Step 2. Use the Isotope Remaining equation to solve for how much isotope will remain after the number of half-lives determined in step 1 have passed.

  Nuclear equations

  Particles making an atom can be written using upper and lower subscripts where a proton, ‘p’ with charge +1 and mass 1ᴜ, is written as .

 A neutron ‘n’ with no charge but with mass 1ᴜ, is written as , while an electron with a charge of -1 and negligible mass is written as . It is important to note that the principles of conservation apply in radioactive decay.

  That means that the total number of nucleons (neutrons + protons) must be the same before and after decay. The L.H.S of the equation must be equal to the R.H.S for both total mass and charge.

  Effects of Radioactive Decay On The Nucleus

Write an equation to show how a radioactive isotope of cobalt ( o) undergoes a beta decay followed by the emission of gamma rays to form a new nuclide X.

 Hazards Of Radioactivity And Their Precautions

(i) Due to the ionizing radiation emitted by radiation materials, they affect living cells leading to serious illnesses. Symptoms of radiation exposures are immature births, deformations, retardedness, etc.

  (ii) Their exposure to the environment through leaks may lead to environmental pollution leading to poor crop growth and destruction of marine life.

  

Join the conversation

You cannot copy content of this page