Course Content
Properties of Matter
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Explain the three states of matter. 2.Explain phenomenon of surface tension. 3.Explain gas laws.
0/3
Measurement
OBJECTIVES By the end of this topic , the trainee should be able to: 1.State the basic and derived quantities of measurements 2.Describe quantities of measurements 3.State the SI units of quantities of measurements and their sub-multipliers 4.Convert units from one to another
0/4
Pressure
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define pressure 2.Determine pressure in solids and fluids 3.Explain the type of instruments used in measurement of pressure of gases 4.Explain transmission of presure in liquids
0/2
Force
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define force and its SI units 2.Explain types of force 3.Measure force 4.Work out calculations involving force 5.Explain Hooke’s law
0/3
Hooke’s Law
Hooke's Law  is a law named after 17th century British physicist Robert Hooke, who sought to demonstrate the relationship between the forces applied to a spring and its elasticity.
0/1
Moments
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define moments of a force 2.Explain principles of moments 3.Explain statics , dynamics and kinematics
0/1
Velocity and Speed
OBJECTIVES By the end of this topic , the trainee should be able to : 1.Define speed and velocity 2.Explain types of motion 3.Determine Linear Determine Circular Motion
0/1
Work and Power
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define work and power 2.Work out calculations involving work and power
0/1
Energy
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define energy 2.Explain forms of energy 3.Explain law of conservation of energy
0/1
Motion
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define motion 2.Explain causes of motion 3.Explain types of motion 4.Describe linear and circular motion
0/3
Newton’s Laws of Motion
OBJECTIVES By the end of this topic, the trainee should be able to: 1.State Newton’s laws of motion 2.Explain relationships between mass and inertia 3.Explain significance of Newton’s laws of motion
0/1
Heat and Heat Transfer
OBJECTIVES By the end of this topic, the trainee should be able to 1.Define temperature and heat 2.Describe instruments used to measure temperature 3.Explain modes of heat transfer 4.Explain factors that influence heat transfer 5.Explain heat capacity, specific heat capacity and specific latent heat of substances 6. Work out calorimetric calculations
0/5
Light
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define light and its properties 2.Explain types of mirrors and lenses 3.Explain reflection and refraction of light 4. Explain the lens formulae
0/10
WAVES
OBJECTIVES By the end of this topic , the trainee should be able to : 1. Define waves 2.Explain types of waves 3.Explain characteristics and properties of waves 4.Explain rectilinear propagation of waves 5.Describe refraction of waves 6.Describe sound and sound waves
0/6
Electrostatics
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define electrostatics 2. Describe the working of electroscopes 3.Describe different methods of charging a body 4.Explain electric fields 5.Describe charge distribution on conductors’ surface 6. Describe capacitors and capacitance
0/5
Magnetism and Electromagnetism
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define magnetism 2.Identify magnetic and non- magnetic materials 3.Explain properties of magnets 4.Describe magnetic field patterns 5.Describe making magnets 6.Explain domain theory of magnets 7.Describe magnetic effect of an electric current. 8. Describe electromagnets and electromagnetism 9.Describe electromagnetic induction
0/6
Current Electricity
CURRENT ELECTRICITY OBJECTIVES By the end of this topic, the trainer should be able to: 1. Define current and electricity 2.Electric potential difference 3.Explain use of a meters, voltmeters and resistors 4.Explain ohm’s law 5. Explain Electromotive force and internal resistance 6.Describe production of electric current 7.Describe simple cells, Leclanche’ cell, dry cells and lea-acid accumulators 8.Describe mains electricity 9.Describe domestic wiring
0/6
Electromagnetic Spectrum
OBJECTIVES By the end of this topic , the trainee should be able to: 1.Define magnetic spectrum 2. Explain properties of electromagnetic waves 3. Describe applications of electromagnetic radiation
0/2
Radioactivity
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define radioactivity 2.Classify radiations 3.Explain the properties of radiation materials 4.Describe nuclear fission and nuclear fusion 5.Describe methods for detecting nuclear radiation 6.Describe activity and half-life of elements 7. Discuss hazards of radioactivity and their precautions 8. Outline the applications of radioactivity
0/4
Cathode and X-Rays
OBJECTIVES By the end of this topic, the trainee should be able to: 1. Define cathode and X- rays 2.Explain production of cathode and X- ray 3.Explain properties of cathode and X- ray 4.Describe cathode ray oscilloscope (CRO) 5. Describe the applications of Cathode and X-rays
0/2
Physics Techniques For Science Laboratory Technicians
About Lesson

Views: 140

INTRODUCTION

 Physics is a branch of science whose objective is the study of components of matter and their mutual interactions. This cannot be possible without   defining  the quantity to be measured and the units for measuring it. Such a  standard unit should be internationally accepted and easily reproducible  

The  International System of Units (SI unit) is all about what is being discussed here. SI units contain seven fundamental units and two supplementary  fundamental units  as shown in table 1 and 2 below

Fundamental Units 

Those physical quantities which are independent to each other are called fundamental  quantities and their units are called fundamental units.

S.No.

Fundamental Quantities

Fundamental Units

Symbol

1

Length

Metres

m

2

Mass

Kilogram

kg

3

Time

Seconds

s

4

Electric Current

Ampere

A

5

Temperature

Kelvin

K

6

Luminous Intensity

Candela

Cd

7

Amount of Substance

Mole

mol

 Supplementary  Units 

Radian and steradian are two supplementary fundamental units. It measures plane angle and  solid angle respectively.

S.No

Supplementary Fundamental Quantities

Supplementary Unit

Symbol

1

Plane angle

Radian

rad

2

Solid angle

Steradian

Sr

Derived Units

Those physical quantities which are derived from fundamental quantities are called derived  quantities and their units are called derived units. e.g., velocity, acceleration, force, work etc.

Scalar and Vector Quantities:

Scalar  Quantities:

Scalar quantities are those quantities that have only magnitudes. They do not have directions.Examples of scalar quantities:

(I) speed

(ii) distance

( iii) time

( iv) volume

(v) area

(vi) temperature

Vector Quantities:

Vector quantities are those quantities that have both magnitudes and directions.Examples of vector quantities:

  1. Displacement
  2. Weigh
  3. Force
  4. Acceleration due to gravity
  5. Electric field
  6. Magnetic field

     Differences Between Scalar and Vector Quantities:

 Scalar quantities

 Vector quantities

It has only magnitude.

 It has magnitude and direction

 it direction can not be determined.  

 It direction can be determined

It is not represented by line and arrow.

 it is represented by line and arrow

Similarities Between Scalar And Vector Quantities:

  1. They are physical quantities in physics
  2. They both have magnitudes
  3. Their magnitudes can be determined by calculations

 

Join the conversation
Peris Kariuki 10 months ago
Where can I get the book
Reply

You cannot copy content of this page