Course Content
Matter
OBJECTIVES By the end of this topic, the trainee should be able to 1.Define matter 2.Explain state of matter 3.Distinguish between physical and chemical changes 4.Explain the gas laws
0/4
Atoms , Elements and Compounds
OBJECTIVES By the end of this topic , the trainee should be able to; 1.Define Elements, Compounds and Mixtures 2.Describe the structure of an atom 3.Describe how to determine the Atomic number ,Mass number and Isotopes
0/3
The Periodic Table
OBECTIVES By the end of this topic, the trainee should be able to : 1.State the historical contribution on development of the periodic table 2.Explain the periodic trends of elements and their compounds 3.State the diagonal relationships of the periodic table
0/3
The S-Block Element
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Explain the chemistry of group I and II elements 2.State the application of group I and two elements and their compounds
0/4
Chemical Bonds
OBJECTIVES By the end of these topic, the trainee should be able to 1.Identify different types of bonds 2.Describe their properties
0/2
Chemical Equilibrium
OBJECTIVES By the end of this topic , the trainee should be able to : 1.Define chemical equilibria 2.Explain types of equilibria 3.Determine equilibrium constant 4.Describe factors affecting chemical equilibrium
0/6
Introduction To Organic Chemistry
By the end of this topic , the trainee should be able to : 1.Explain the aspects of organic chemistry 2.Describe hydrocarbons 3.Classify organic molecules explain chemical reactions of simple organic molecules 4.Explain the properties , synthesis and uses of simple organic molecules
0/10
Acids, Bases and Salts
OBJECTIVES By the end of this session , the trainee should be able to : 1.State properties of acids and bases 2.Differentiate between strong and weak acids 3.Explain types and properties of salts
0/2
PH Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define the term PH 2.Explain the basic theory of PH 3.State the relationship between PH and color change in indicators 4.Explain the term buffer solution 5.Describe the preparation of buffer solutions 6.State the application of buffer solutions
0/5
Sampling and Sample Preparation
OBJECTIVE By the end of this topic, the trainee should be able to : 1.Define the terms used in sample preparation 2.State the importance of sampling 3.Describe the techniques of sampling 4.Describe the procedure for sample pre-treatment 5.State sample storage methods
0/5
Separation Techniques
OBJECTIVES By the end of this topic , the trainee should be able to : 1.Define separation, extraction and purification 2.Describe the separation , extraction and purification techniques 3.Explain the methods of determining purity of substances
0/2
Heating and Cooling Techniques
OBJECTIVES To identify various techniques used for heating and cooling substances in the laboratory
Heating and Cooling Techniques
OBJECTIVES To identify various techniques used for heating and cooling substances in the laboratory
0/1
Distillation Techniques
By end of this topic, Trainee should be able to : 1. Define distilation 2. State and explain various distillation techniques 3. Outline Various distillation techniques 4. Outline the applications of Distillation techniques
0/3
Crystallization Techniques
OBJECTIVES By the end of the topic, the learner should be able to: 1.To define crystallization 2.To describe crystallization process 3.To carry out crystallization procedure
0/1
Solvent Extraction Techniques
OBJECTIVES By the end of the topic, the learner should be able to 1.Define solvent extraction 2.Explain terms used in solvent extraction 3.Describe methods of solvent extraction 4.Describe selection of appropriate solvents for solvent extraction 5.Determine distribution ration 6.Outline factors actors influencing the extraction efficiency 7.Describe Soxhlet extraction
0/1
Chromatography Techniques
OBJECTIVES By the end of this topic, the learner should be able to: 1.Define chromatography techniques 2.Explain terms used in chromatography techniques 3.Describe principles of chromatography techniques 4.Explain types of chromatography techniques 5.Carry out chromatography experiments 6.Determine RF factor 7.Outline electrophoresis
0/6
Titrimetric Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define terms used in titrimetric analysis 2.Describe types of titrimetric analysis 3.Balance chemical reactions 4.Work out calculations involved in titrimetric analysis
0/6
Redox Titration
Redox Titration is a laboratory method of determining the concentration of a given analyte by causing a redox reaction between the titrant and the analyte. Redox titration is based on an oxidation-reduction reaction between the titrant and the analyte. It is one of the most common laboratory methods used to identify the concentration of unknown analytes. Redox reactions involve both oxidation and reduction. The key features of reduction and oxidation are discussed below.
0/5
Complexiometric Titration
omplexometric Titration or chelatometry is a type of volumetric analysis wherein the colored complex is used to determine the endpoint of the titration. The method is particularly useful for determination of the exact number of a mixture of different metal ions, especially calcium and magnesium ions present in water in solution .
0/5
Gravimetric Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define gravimetric analysis 2.Describe the principles of gravimetric analysis 3.Describe the steps involved in gravimetric analysis 4.Explain factors affecting gravimetric analysis 5.Describe the equipments and apparatus used in gravimetric analysis 6.Carry out gravimetric analysis
0/8
Calorimetric Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define terms and units used in thermochemistry 2.Determine enthalpy changes in chemical reactions 3.Determine heat capacity and specific heat capacity 4.Compare calorific values of different materials 5.Determine different heat reactions 6.Apply law of conservation of energy and Hess law in thermochemical calculations
0/4
Chemistry Techniques for Science Laboratory Technicians
About Lesson

Views: 12

AMINES

Amine is a type of compound that is derived from ammonia (NH3). In other words, we can simply say that amines are derivatives of ammonia.

Some of the naturally occurring amines include alkaloids found in certain plants; catecholamine neurotransmitters (i.e. dopamine, epinephrine, and norepinephrine); and a specific chemical mediator, histamine, existing in most animal tissues. Common examples of amines include amino acids, trimethylamine, and aniline. Meanwhile, inorganic ammonia compounds such as monochloramine (NClH2) are also called amines.

An amine is generally a functional group with a nitrogen atom having a lone pair. Amines resemble ammonia structurally where nitrogen can bond up to 3 hydrogen atoms. Generally, in amines, hydrogen atoms are substituted by an aryl or alkyl group.

Compounds of nitrogen connected to a carbonyl group are called as amides, they have a structure R–CO–NR′R″ and varies in properties with amines.

Alkyl Amines

Alkylamines consist of tetrahedral nitrogen centres. Here the C-N-C and C-N-H bond angle is 109 °. The distance between C-N is smaller compared to the C-C range. The amines can also have a chiral property where the centre of nitrogen holds four replacements that create the lone pairs.

Aromatic Amines

Nitrogen almost has a planar structure in aromatic amines (“anilines”). This is due to the mixture of the lone pair with the aryl substituent. The C-N range is shorter. For aniline, the distance between C-N is the same as the distances between C-C.

Examples:

  1. H2N –(CH2)6– NH2    (Hexane -1,6-diamine or 1,6-hexane diamine)

Occurrence of Amines

Naturally, amines occur in proteins, vitamins, hormones, etc. and they are also prepared synthetically to make polymers, drugs, and dyes.

Uses of Amines

Amines have a widespread application in our daily lives. Some uses of amines are listed below:

It is used in water purification, medicine manufacturing and development of insecticides and pesticides.

It is involved in the production of amino acids which is the building block of proteins in living beings. Many varieties of vitamins are also made by amines.

Serotonin is an important amine that functions as one of the primary neurotransmitters. It controls the feelings of hunger and is critical for the speed with which the brain operates in general.

Pain-relieving medicines such as Morphine and Demerol which are also known as analgesics are made from amines.

Types of Amines

On the basis of how the hydrogen atoms are replaced by an ammonia molecule, amines can be divided into 4 types.


Primary Amines

When one of the hydrogen atoms of the ammonia molecule is replaced by an alkyl or aryl group. Eg: Methylamine CH3NH2, Aniline C6H5NH2

Secondary Amines

Two organic substituents replace the hydrogen atoms of the ammonia molecule forming an amine. Eg: Dimethylamine (CH3)2NH, Diphenylamine  (C6H5)2NH

Tertiary Amines

When all 3 of the hydrogen atoms are replaced by an organic substituent, it could be an aryl or aromatic group. Eg: Trimethylamine N(CH3)3, Ethylenediaminetetraacetic acid (EDTA)

Cyclic Amines

These are secondary or tertiary amines in an aromatic ring structure. Eg: Piperidine (CH2)5NH, Aziridines C2H5N

Join the conversation

You cannot copy content of this page