Course Content
Matter
OBJECTIVES By the end of this topic, the trainee should be able to 1.Define matter 2.Explain state of matter 3.Distinguish between physical and chemical changes 4.Explain the gas laws
0/4
Atoms , Elements and Compounds
OBJECTIVES By the end of this topic , the trainee should be able to; 1.Define Elements, Compounds and Mixtures 2.Describe the structure of an atom 3.Describe how to determine the Atomic number ,Mass number and Isotopes
0/3
The Periodic Table
OBECTIVES By the end of this topic, the trainee should be able to : 1.State the historical contribution on development of the periodic table 2.Explain the periodic trends of elements and their compounds 3.State the diagonal relationships of the periodic table
0/3
The S-Block Element
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Explain the chemistry of group I and II elements 2.State the application of group I and two elements and their compounds
0/4
Chemical Bonds
OBJECTIVES By the end of these topic, the trainee should be able to 1.Identify different types of bonds 2.Describe their properties
0/2
Chemical Equilibrium
OBJECTIVES By the end of this topic , the trainee should be able to : 1.Define chemical equilibria 2.Explain types of equilibria 3.Determine equilibrium constant 4.Describe factors affecting chemical equilibrium
0/6
Introduction To Organic Chemistry
By the end of this topic , the trainee should be able to : 1.Explain the aspects of organic chemistry 2.Describe hydrocarbons 3.Classify organic molecules explain chemical reactions of simple organic molecules 4.Explain the properties , synthesis and uses of simple organic molecules
0/10
Acids, Bases and Salts
OBJECTIVES By the end of this session , the trainee should be able to : 1.State properties of acids and bases 2.Differentiate between strong and weak acids 3.Explain types and properties of salts
0/2
PH Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define the term PH 2.Explain the basic theory of PH 3.State the relationship between PH and color change in indicators 4.Explain the term buffer solution 5.Describe the preparation of buffer solutions 6.State the application of buffer solutions
0/5
Sampling and Sample Preparation
OBJECTIVE By the end of this topic, the trainee should be able to : 1.Define the terms used in sample preparation 2.State the importance of sampling 3.Describe the techniques of sampling 4.Describe the procedure for sample pre-treatment 5.State sample storage methods
0/5
Separation Techniques
OBJECTIVES By the end of this topic , the trainee should be able to : 1.Define separation, extraction and purification 2.Describe the separation , extraction and purification techniques 3.Explain the methods of determining purity of substances
0/2
Heating and Cooling Techniques
OBJECTIVES To identify various techniques used for heating and cooling substances in the laboratory
Heating and Cooling Techniques
OBJECTIVES To identify various techniques used for heating and cooling substances in the laboratory
0/1
Distillation Techniques
By end of this topic, Trainee should be able to : 1. Define distilation 2. State and explain various distillation techniques 3. Outline Various distillation techniques 4. Outline the applications of Distillation techniques
0/3
Crystallization Techniques
OBJECTIVES By the end of the topic, the learner should be able to: 1.To define crystallization 2.To describe crystallization process 3.To carry out crystallization procedure
0/1
Solvent Extraction Techniques
OBJECTIVES By the end of the topic, the learner should be able to 1.Define solvent extraction 2.Explain terms used in solvent extraction 3.Describe methods of solvent extraction 4.Describe selection of appropriate solvents for solvent extraction 5.Determine distribution ration 6.Outline factors actors influencing the extraction efficiency 7.Describe Soxhlet extraction
0/1
Chromatography Techniques
OBJECTIVES By the end of this topic, the learner should be able to: 1.Define chromatography techniques 2.Explain terms used in chromatography techniques 3.Describe principles of chromatography techniques 4.Explain types of chromatography techniques 5.Carry out chromatography experiments 6.Determine RF factor 7.Outline electrophoresis
0/6
Titrimetric Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define terms used in titrimetric analysis 2.Describe types of titrimetric analysis 3.Balance chemical reactions 4.Work out calculations involved in titrimetric analysis
0/6
Redox Titration
Redox Titration is a laboratory method of determining the concentration of a given analyte by causing a redox reaction between the titrant and the analyte. Redox titration is based on an oxidation-reduction reaction between the titrant and the analyte. It is one of the most common laboratory methods used to identify the concentration of unknown analytes. Redox reactions involve both oxidation and reduction. The key features of reduction and oxidation are discussed below.
0/5
Complexiometric Titration
omplexometric Titration or chelatometry is a type of volumetric analysis wherein the colored complex is used to determine the endpoint of the titration. The method is particularly useful for determination of the exact number of a mixture of different metal ions, especially calcium and magnesium ions present in water in solution .
0/5
Gravimetric Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define gravimetric analysis 2.Describe the principles of gravimetric analysis 3.Describe the steps involved in gravimetric analysis 4.Explain factors affecting gravimetric analysis 5.Describe the equipments and apparatus used in gravimetric analysis 6.Carry out gravimetric analysis
0/8
Calorimetric Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define terms and units used in thermochemistry 2.Determine enthalpy changes in chemical reactions 3.Determine heat capacity and specific heat capacity 4.Compare calorific values of different materials 5.Determine different heat reactions 6.Apply law of conservation of energy and Hess law in thermochemical calculations
0/4
Chemistry Techniques for Science Laboratory Technicians
About Lesson

Views: 28

Column chromatography 

Column chromatography is a technique which is used to separate a single chemical compound from a mixture dissolved in a fluid. It separates substances based on differential adsorption of compounds to the adsorbent as the compounds move through the column at different rates which allow them to get separated in fractions. The process of a chromatographic separation takes place within a chromatography column. 

This column, made of glass or metal, is either a packed bed or open tubular column. A packed bed column contains particles which make up the stationary phase. Open tubular columns are lined with a thin film stationary phase. The center of the column is hollow. The mobile phase is typically a solvent moving through the column which carries the mixture to be separated. This can either be a liquid or a gas, depending on the type of process.

The stationary phase is usually a viscous liquid coated on the surface of solid particles which are packed into the column as discussed above, although the solid particles can also be taken as the stationary phase. In any case, the partitioning of solutes between the stationary and mobile phases lead to the desired separations.

This technique can be used on a small scale as well as large scale to purify materials that can be used in future experiments. This method is a type of adsorption chromatography technique.

Column Chromatography Principle

When the mobile phase along with the mixture that needs to be separated is introduced from the top of the column, the movement of the individual components of the mixture is at different rates. The components with lower adsorption and affinity to stationary phase travel faster when compared to the greater adsorption and affinity with the stationary phase. The components that move fast are removed first whereas the components that move slowly are eluted out last.

The adsorption of solute molecules to the column occurs in a reversible manner. The rate of the movement of the components is expressed as:

  •          Rf = the distance travelled by solute
  •                   the distance travelled by the solvent

Ris the retardation factor. 

                   

                               Column Chromatography Diagram

Column chromatography involve the following two phases

  1. Mobile phase– This phase is made up of solvents and it performs the following functions:
  1. It acts as a solvent – sample mixture can be introduced in the column.
  2. It acts as a developing agent – helps in the separation of components in the sample to form bands.
  3. It acts as an eluting agent – the components that are separated during the experiment are removed from the column
  4. Some examples of solvents used as mobile phase based on their polarity are – ethanol, acetone, water, acetic acid, pyridine, etc.
    1. Stationary phase– It is a solid material which should have good adsorption property and meet the conditions given below:

Shape and size of particle: Particles should have

  1. uniform shape and size in the range of 60 – 200μ in diameter.
  2. Stability and inertness of particles: high mechanical stability and chemically inert. Also, no reaction with acids or bases or any other solvents used during the experiment.
  3. It should be colourless, inexpensive and readily available.
  4. Should allow free flow of mobile phase
  5. It should be suitable for the separation of mixtures of various compounds.

Column Chromatography Experiment

The stationary phase is made wet with the help of solvent as the upper level of the mobile phase and the stationary phase should match. The mobile phase or eluent is either solvent or mixture of solvents. In the first step the compound mixture that needs to be separated, is added from the top of the column without disturbing the top level. The tap is turned on and the adsorption process on the surface of silica begins.

Without disturbing the stationary phase solvent mixture is added slowly by touching the sides of the glass column. The solvent is added throughout the experiment as per the requirement.

The tap is turned on to initiate the movement of compounds in the mixture. The movement is based on the polarity of molecules in the sample. The non-polar components move at a greater speed when compared to the polar components.

For example, a compound mixture consists of three different compounds viz red, blue, green then their order based on polarity will be as follows blue>red>green

As the polarity of the green compound is less, it will move first. When it arrives at the end of the column it is collected in a clean test tube. After this, the red compound is collected and at last blue compound is collected. All these are collected in separate test tubes.

Types of Column Chromatography:

  1. Adsorption column chromatography – Adsorption chromatography is a technique of separation, in which the components of the mixture are adsorbed on the surface of the adsorbent.
  2. Partition column chromatography – The stationary phase, as well as mobile phase, are liquid in partition chromatography.
  3. Gel column chromatography – In this method of chromatography, the separation takes place through a column packed with gel. The stationary phase is a solvent held in the gap of a solvent.
  4. Ion exchange column chromatography – A chromatography technique in which the stationary phase is always ion exchange resin.

Applications  of Column Chromatography 

  1. Column Chromatography is used to isolate active ingredients.
  2. It is very helpful in Separating compound mixtures.
  3. It is used to determine drug estimation from drug formulations
  4. It is used to remove impurities.
  5. Used to isolation metabolites from biological fluids.
Join the conversation

You cannot copy content of this page