Course Content
Matter
OBJECTIVES By the end of this topic, the trainee should be able to 1.Define matter 2.Explain state of matter 3.Distinguish between physical and chemical changes 4.Explain the gas laws
0/4
Atoms , Elements and Compounds
OBJECTIVES By the end of this topic , the trainee should be able to; 1.Define Elements, Compounds and Mixtures 2.Describe the structure of an atom 3.Describe how to determine the Atomic number ,Mass number and Isotopes
0/3
The Periodic Table
OBECTIVES By the end of this topic, the trainee should be able to : 1.State the historical contribution on development of the periodic table 2.Explain the periodic trends of elements and their compounds 3.State the diagonal relationships of the periodic table
0/3
The S-Block Element
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Explain the chemistry of group I and II elements 2.State the application of group I and two elements and their compounds
0/4
Chemical Bonds
OBJECTIVES By the end of these topic, the trainee should be able to 1.Identify different types of bonds 2.Describe their properties
0/2
Chemical Equilibrium
OBJECTIVES By the end of this topic , the trainee should be able to : 1.Define chemical equilibria 2.Explain types of equilibria 3.Determine equilibrium constant 4.Describe factors affecting chemical equilibrium
0/6
Introduction To Organic Chemistry
By the end of this topic , the trainee should be able to : 1.Explain the aspects of organic chemistry 2.Describe hydrocarbons 3.Classify organic molecules explain chemical reactions of simple organic molecules 4.Explain the properties , synthesis and uses of simple organic molecules
0/10
Acids, Bases and Salts
OBJECTIVES By the end of this session , the trainee should be able to : 1.State properties of acids and bases 2.Differentiate between strong and weak acids 3.Explain types and properties of salts
0/2
PH Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define the term PH 2.Explain the basic theory of PH 3.State the relationship between PH and color change in indicators 4.Explain the term buffer solution 5.Describe the preparation of buffer solutions 6.State the application of buffer solutions
0/5
Sampling and Sample Preparation
OBJECTIVE By the end of this topic, the trainee should be able to : 1.Define the terms used in sample preparation 2.State the importance of sampling 3.Describe the techniques of sampling 4.Describe the procedure for sample pre-treatment 5.State sample storage methods
0/5
Separation Techniques
OBJECTIVES By the end of this topic , the trainee should be able to : 1.Define separation, extraction and purification 2.Describe the separation , extraction and purification techniques 3.Explain the methods of determining purity of substances
0/2
Heating and Cooling Techniques
OBJECTIVES To identify various techniques used for heating and cooling substances in the laboratory
Heating and Cooling Techniques
OBJECTIVES To identify various techniques used for heating and cooling substances in the laboratory
0/1
Distillation Techniques
By end of this topic, Trainee should be able to : 1. Define distilation 2. State and explain various distillation techniques 3. Outline Various distillation techniques 4. Outline the applications of Distillation techniques
0/3
Crystallization Techniques
OBJECTIVES By the end of the topic, the learner should be able to: 1.To define crystallization 2.To describe crystallization process 3.To carry out crystallization procedure
0/1
Solvent Extraction Techniques
OBJECTIVES By the end of the topic, the learner should be able to 1.Define solvent extraction 2.Explain terms used in solvent extraction 3.Describe methods of solvent extraction 4.Describe selection of appropriate solvents for solvent extraction 5.Determine distribution ration 6.Outline factors actors influencing the extraction efficiency 7.Describe Soxhlet extraction
0/1
Chromatography Techniques
OBJECTIVES By the end of this topic, the learner should be able to: 1.Define chromatography techniques 2.Explain terms used in chromatography techniques 3.Describe principles of chromatography techniques 4.Explain types of chromatography techniques 5.Carry out chromatography experiments 6.Determine RF factor 7.Outline electrophoresis
0/6
Titrimetric Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define terms used in titrimetric analysis 2.Describe types of titrimetric analysis 3.Balance chemical reactions 4.Work out calculations involved in titrimetric analysis
0/6
Redox Titration
Redox Titration is a laboratory method of determining the concentration of a given analyte by causing a redox reaction between the titrant and the analyte. Redox titration is based on an oxidation-reduction reaction between the titrant and the analyte. It is one of the most common laboratory methods used to identify the concentration of unknown analytes. Redox reactions involve both oxidation and reduction. The key features of reduction and oxidation are discussed below.
0/5
Complexiometric Titration
omplexometric Titration or chelatometry is a type of volumetric analysis wherein the colored complex is used to determine the endpoint of the titration. The method is particularly useful for determination of the exact number of a mixture of different metal ions, especially calcium and magnesium ions present in water in solution .
0/5
Gravimetric Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define gravimetric analysis 2.Describe the principles of gravimetric analysis 3.Describe the steps involved in gravimetric analysis 4.Explain factors affecting gravimetric analysis 5.Describe the equipments and apparatus used in gravimetric analysis 6.Carry out gravimetric analysis
0/8
Calorimetric Analysis
OBJECTIVES By the end of this topic, the trainee should be able to: 1.Define terms and units used in thermochemistry 2.Determine enthalpy changes in chemical reactions 3.Determine heat capacity and specific heat capacity 4.Compare calorific values of different materials 5.Determine different heat reactions 6.Apply law of conservation of energy and Hess law in thermochemical calculations
0/4
Chemistry Techniques for Science Laboratory Technicians
About Lesson

Views: 54

Atomic Structure of Isotopes

Nucleons are the components of the nucleus of an atom. A nucleon can either be a proton or a neutron. Each element has a unique number of protons in it, which is described by its unique atomic number. However, several atomic structures of an element can exist, which differ in the total number of nucleons.

These variants of elements having a different nucleon number (also known as the mass number) are called isotopes of the element. Therefore, the isotopes of an element have the same number of protons but differ in the number of neutrons.

The atomic structure of an isotope is described with the help of the chemical symbol of the element, the atomic number of the element, and the mass number of the isotope. For example, there exist three known naturally occurring isotopes of hydrogen, namely, protium, deuterium, and tritium. The atomic structures of these hydrogen isotopes are illustrated below.

The isotopes of an element vary in stability. The half-lives of isotopes also differ. However, they generally have similar chemical behavior owing to the fact that they hold the same electronic structures.

Atomic Structures of Some Elements

The structure of atom of an element can be simply represented via the total number of protons, electrons, and neutrons present in it. The atomic structures of a few elements are illustrated below.

Hydrogen

The most abundant isotope of hydrogen on the planet Earth is protium. The atomic number and the mass number of this isotope are 1 and 1, respectively.

Structure of Hydrogen atom: This implies that it contains one proton, one electron, and no neutrons ( total number of neutrons = mass number – atomic number)

Carbon

Carbon has two stable isotopes – 12C and 13C. Of these isotopes, 12C has an abundance of 98.9%. It contains 6 protons, 6 electrons, and 6 neutrons.

Structure of Carbon atom: The electrons are distributed into two shells and the outermost shell (valence shell) has four electrons. The tetravalency of carbon enables it to form a variety of chemical bonds with various elements.

Oxygen

There exist three stable isotopes of oxygen – 18O, 17O, and 16O. However, oxygen-16 is the most abundant isotope.

Structure of Oxygen atom: Since the atomic number of this isotope is 8 and the mass number is 16, it consists of 8 protons and 8 neutrons. 6 out of the 8 electrons in an oxygen atom lie in the valence shell.

Heisenberg’s uncertainty principle: Heisenberg stated that no two conjugate physical quantities can be measured simultaneously with 100% accuracy. These will always be some error or uncertainty in the measurement.

Drawback: Position and momentum are two such conjugate quantities that were measured accurately by Bohr (theoretically).

Stark effect: Phenomenon of deflection of electrons in the presence of an electric field.

Zeeman effect: Phenomenon of deflection of electrons in the presence of a magnetic field.

Dual Nature of Matter

The electrons which were treated to be particles, the evidence of photoelectric effect shows they also have wave nature. This was proved by Thomas young with the help of his double slit experiment.

De-Broglie concluded that since nature is symmetrical, so should be light or any other matter wave.

Quantum Numbers

  • Principal Quantum number (n): It denotes the orbital number or shell number of electron.
  • Azimuthal Quantum numbers (l): It denotes the orbital (sub-orbit) of the electron.
  • Magnetic Quantum number: It denotes the number of energy states in each orbit.
  • Spin Quantum number(s): It denotes the direction of spin, S = -½ = Anticlockwise and ½ = Clockwise.

Electronic Configuration of an Atom

The electrons have to be filled in the s, p, d, f in accordance with the following rule.

  1. Aufbau’s principle: The filling of electrons should take place in accordance with the ascending order of energy of orbitals:
  • Lower energy orbital should be filled first and higher energy levels.
  • The energy of orbital α(p + l) value it two orbitals have same (n + l) value, E α n
  • Ascending order of energy 1s, 2s, 2p, 3s, 3p, 4s, 3d, . . .
  1. Pauli’s exclusion principle: No two electrons can have all the four quantum numbersto be the same or if two electrons have to be placed in an energy state they should be placed with opposite spies.
  2. Hund’s rule of maximum multiplicity: In the case of filling degenerate (same energy) orbitals, all the degenerate orbitals have to be singly filled first and then only pairing has to happen.
Join the conversation

You cannot copy content of this page